Dependency Parsing with LSTMs: An Empirical Evaluation
نویسندگان
چکیده
We propose a transition-based dependency parser using Recurrent Neural Networks with Long Short-Term Memory (LSTM) units. This extends the feedforward neural network parser of Chen and Manning (2014) and enables modelling of entire sequences of shift/reduce transition decisions. On the Google Web Treebank, our LSTM parser is competitive with the best feedforward parser on overall accuracy and notably achieves more than 3% improvement for long-range dependencies, which has proved difficult for previous transition-based parsers due to error propagation and limited context information. Our findings additionally suggest that dropout regularisation on the embedding layer is crucial to improve the LSTM’s generalisation.
منابع مشابه
Arc-Standard Spinal Parsing with Stack-LSTMs
We present a neural transition-based parser for spinal trees, a dependency representation of constituent trees. The parser uses Stack-LSTMs that compose constituent nodes with dependency-based derivations. In experiments, we show that this model adapts to different styles of dependency relations, but this choice has little effect for predicting constituent structure, suggesting that LSTMs induc...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملAMR Parsing using Stack-LSTMs
We present a transition-based AMR parser that directly generates AMR parses from plain text. We use Stack-LSTMs to represent our parser state and make decisions greedily. In our experiments, we show that our parser achieves very competitive scores on English using only AMR training data. Adding additional information, such as POS tags and dependency trees, improves the results further.
متن کاملImproved Transition-based Parsing by Modeling Characters instead of Words with LSTMs
We present extensions to a continuousstate dependency parsing method that makes it applicable to morphologically rich languages. Starting with a highperformance transition-based parser that uses long short-term memory (LSTM) recurrent neural networks to learn representations of the parser state, we replace lookup based word representations with representations constructed based on the orthograp...
متن کاملA Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing
We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1604.06529 شماره
صفحات -
تاریخ انتشار 2016